

Multidisciplinary Precision Imaging Research – Role of Academic / Industry relationships

André Hartung, President of Diagnostic Imaging, Siemens Healthineers

Please describe an important scientific or clinical gap in our capabilities for precision imaging that may be better overcome through an effective academic/industrial partnership.

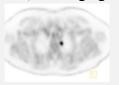
15th Biennial Symposium of the International Society for Strategic Studies in Radiology

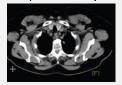
IS3R 2023

Berlin/Germany August 24–26, 2023

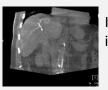
Collaboration enabling precision imaging: leveraging multiple data sources for personalized care

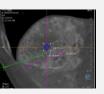
Achieve more personalized diagnosis...


Liver dynamic contrast-enhanced MR¹

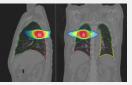


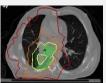
PET/CT imaging of small pulmonary nodule (<1cm)²





- Expand imaging biomarker research for a better identification and characterization of cancer
- Better understand the value of functional/biological information (PET/CT, spectral, etc.) for therapy response prediction and monitoring
- Integrate other diagnostic information (e.g., radiomics, genomics, pathology) for precision diagnosis


...for a more personalized treatment delivery


Intraprocedural imaging³

Needle positioning planning

Lung ventilation info. for functional RT planning⁴

PET/CT-based selective RT dose escalation to lung tumor⁵

- Deeper integration of multimodal diagnostic information in therapeutic trials (e.g, pharma, radiation/interventional therapies)
- Personalized treatment plan for improved patient outcome

Structured, integrated, unified, and smart patient management platform

Cross-stakeholder collaboration becomes critical to unleash full potential

Please discuss your experience with one example of a successful academic/industrial collaboration that resulted in an advance in precision imaging that neither partner could achieve as effectively alone.

15th Biennial Symposium of the International Society for Strategic Studies in Radiology

IS3R 2023

Berlin/Germany August 24–26, 2023

Collaboration driving innovation: NAEOTOM Alpha

Expert meeting

2014

Early prototypes

2016

2nd gen prototypes

.020

Clinical evidence

Today

Technical evaluation

IOP Publishing | Institute of Physics and Engineering in Medicine

Phys. Med. Biol. 61 (2016) 1572-1595

Physics in Medicine & Biology doi:10.1088/0031-9155/61/4/1572

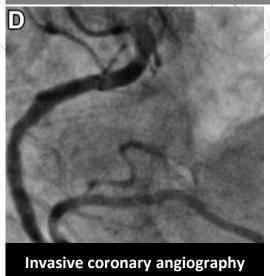
Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

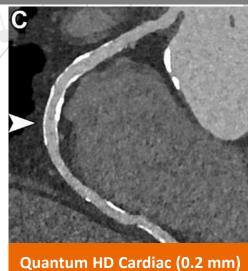
Zhicong Yu¹, Shuai Leng¹, Steven M Jorgensen², Zhoubo Li^{1,3}, Ralif Gutjahr¹, Baiyu Chen¹, Ahmed F Halaweish⁵, Steffen Kappler¹, Lifeng Yu¹, Erik L Ritman² and Cynthia H McCollough¹

Department of Padiology Mayo Clinic Pochastar Minnacota 55005 US

Feasibility studies

Abdominal Imaging with Contrast-enhanced Photoncounting CT: First Human


Experience¹


Amir Pourmorteza, PhD Rolf Symons, MD Velt Sandfort, MD Marissa Mallek, RN Matthew K. Fuld, PhD Gregory Henderson, RT Elizabeth C. Jones, MD Ashkan A. Malayeri, MD Les R. Folio, DO David A. Bluemke, MD, PhD Purpose:

To evaluate the performance of a prototype photon-counting detector (PCD) computed tomography (CT) system for abdominal CT in humans and to compare the results with a conventional energy-integrating detector (EID).

The study was HIPAA-compliant and institutional review board-approved with informed consent. Fifteen asymptomatic volunteers (seven me; mean age, 582 years ± 9.8 [standard deviation]) were prospectively enrolled between September 2 and November 13, 2015. Radiation dose-matched delayed contrast agent-prhanced soiral

Clinical evaluation¹

Collaboration driving innovation: NAEOTOM Alpha

Expert meeting

Early prototypes

2nd gen prototypes

2020

Clinical evidence

Today

Technical evaluation

Phys. Med. Biol. 61 (2016) 1572-1595

Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

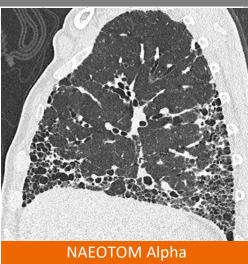
> Zhicong Yu1, Shuai Leng1, Steven M Jorgensen2, Zhoubo Li^{1,3}, Ralf Gutjahr⁴, Baiyu Chen¹, Ahmed F Halaweish⁵, Steffen Kappler⁴, Lifeng Yu¹, Erik L Ritman² and Cynthia H McCollough¹

Feasibility studies

Abdominal Imaging with Contrast-enhanced Photoncounting CT: First Human

Experience¹

Amir Pourmorteza, PhD Rolf Symons, MD Veit Sandfort, MD Marissa Mallek RN Matthew K. Fuld. PhD Gregory Henderson, RT Elizabeth C. Jones, MD Ashkan A. Malayeri, MD Les R. Folio, DO David A. Bluemke, MD, PhD


To evaluate the performance of a prototype photoning detector (PCD) computed tomography (CT) system for abdominal CT in humans and to compare the results

tween September 2 and November 13, 2015. Radiation

Clinical evaluation²

DLP: 129.8 ± 1.7 mGy*cm

DLP: 88.5 ± 21 mGv*cm

2 Gaillandre et al. (2023). https://doi.org/10.1007/s00330-023-09616-x Image: Courtesy of University Centre of Lille, France