

IS3R 2023

Berlin/Germany August 24–26, 2023

Where do we go from here in CT? Academic perspective

Mathias Prokop Radboud UMC, Nijmegen UMC Groningen The Netherlands

Disclosures

Research support

• Canon Medical Systems, Siemens Healthineers

Speaker bureau

Canon Medical Systems, Siemens Healthineers

Department

- Thirona (Spinoff; AI for chest imaging)
- Veolity (License; Lung screening software)
- Similarity Filter (License; Noise reduction for 4DCT)

thirona

CT used to be an Exponential Technique

Computed Tomography Hardware

High-end detectors

- 4 cm to 16 cm wide (64 to 320 rows)
- Detector elements
 0.5-0.625 mm effective
- Low electronic noise
- Dual layer

Gantry

- 0.25 s per rotation
- Table speed up to 737 mm/s

Tubes

- High Performance (70-150 kV)
- Dual Source

Split Detector Dual Energy Imaging

Computed Tomography Future of Hardware Development

- High-resolution 1-2 years
- 0.25 mm detector elements Low electronic noise
 Photon-counting detectors
- Lowest dose
- Dual energy and scatter suppression for <u>5-10 years</u>

Phase-contrast scanning

- Monoenergetic , phasecoherent radiation
- Scanners with inverse Geometry
- Dose painting
- One-shot body scans

ECR 2017 • Friday, March 3 • 13:00-13:30 • Room A

???

???

Joseph Lissner Honorary Lecture

The Future of CT From Hardware to Software

UHRCT

0.25 mm UHR detector

Courtesy Dr. Murayama, Fujita Health University, Japan

UHRCT 0.25 mm Detectors

Conventional CT

UHR-CT

UHRCT

160 x 0.25 mm 1kx1k matrix

 CTDI_{vol}
 7.6 mGy

 DLP
 318 mGy cm

 E
 4.5 mSv

Aggressiveness Prediction UHR-CT

Predictors of invasive adenocarcinoma:

- solid core > 8mm
- disruption of air bronchiologram

Yanagawa M et al. Radiology 2020; 297:462–471

Iterative Reconstruction

Female 52 years old, Follow-up imaging for IPMN

Deep Learning Reconstruction

Female 52 years old, Follow-up imaging for IPMN

Subtraction – Iodine Overlay

Female 52 years old, Follow-up imaging for IPMN

Computed Tomography

Future of Hardware Development

High-resolution detectors

- 0.25 mm detector elements
 Low electronic noise
- Photon-counting detectors
- Lowest dose
- Dual energy and scatter
 suppression for free 2022

Phase-contrast scanning

 Monoenergetic , phasecoherent radiation

???

???

- Scanners with inverse Geometry
- Dose painting
- One-shot body scans

High resolution

• 120 x 0.2 mm detectors

No electronic noise

- Ultra-low dose scanning
- Dose accumulation across multiple scans

Multiple energy bins

- Dual energy always available
- Optimum spatial alignment

120kVp | DLP 427 mGy*cm

MPR | 0.4 mm | Bv44 | 1024 matrix

MPR | 0.2 mm | Bv56 | 1024 matrix

VRT

Courtesy of Semmelweis University, Budapest, Hungary

Courtesy of University Hospital Zurich, Zurich, Switzerland

Calcium removal

140kVp | CTDI_{vol} 16.4 mGy

Courtesy of of Dr. Jones & Partners – SAHMRI, Adelaide, Australia

Photon Counting CT UHR-CT

Courtesy of M. Remy-Jardin, Lille, France

Computed Tomography Electronic noise

Photon Counting CT Low-dose applications

PCCT 0.24 mSv

Standard CT 0.57 mSv

Nehra A et al. Radiographics 2023; 43(5) e220158

Photon Counting CT Ultralow-dose applications

Inspiration CTDI_{vol} 0.05 mGy

Expiration CTDI_{vol} 0.05 mGy

Nehra A et al. Radiographics 2023; 43(5) e220158

Photon Counting CT Novel iterative reconstructions

Sartoretti T et al. Radiology 2022; 303:339–348

Photon Counting CT Dual energy – iodine map

Nehra A et al. Radiographics 2023; 43(5) e220158

Photon Counting CT Dual energy – late enhancement

Nehra A et al. Radiographics 2023; 43(5) e220158

Photon Counting CT Dual energy – extracellular volume quantification

Mergen V et al. Invest Radiol 2022; 57: 406–411

Faby and Kachelrieß, MedPhys 42(7):4349

Faby and Kachelrieß, MedPhys 2015; 42(7):4349

Venous

Sub Arterial

Sub Venous

Venous

Sub Arterial

Sub Venous

CT Technology Beyond Industry Push

Beyond Morphology

Necessary Technological Advances

Key technologies

- 1. Motion correction (raw data and image data)
- 2. Noise suppression
- 3. Easy presentation of complex information

Necessary for

- CT perfusion
- CT motion and ventilation analysis
- Analysis of temporal change on follow-up imaging

Beyond Morphology

Necessary Technological Advances

Key technologies

Motion correction – basis for any advanced processing and analysis

will not be accepted

Radboudumc

- Noise suppression required for acceptance (radiation dose) 2.
- Easy presentation required for implementation 3. Anything that holds up reporting

Necessary for

- CT perfusion
- CT motion and ventilation analysis
- Analysis of temporal change on follow-up imaging

High-resolution CT Perfusion

Ewoud Smit, Nijmegen

Temporal Subtraction

Hoen Oh Shin, Hannover Medical School

CT Perfusion / Ventilation / Change Assessment Future use cases

Why are we not there?

- We worked on it for the past 15 years
- It is difficult
- It requires patience and patients
- It requires successful clinical use cases and trials that prove them
- It should be (reasonably) easy to interpret
- It requires adequate reimbursement

Clinician pull

But if it has CLINICAL value, clinicians will order it, and we will do it

Clinical Pull

Example Wakeup Stroke

TIME IS ON YOUR SIDE WITH RAPID.

THE MOST ADVANCED CEREBROVASCULAR IMAGING PLATFORM AVAILABLE

RAPID response time, RAPID results, with custom notifications, on any mobile device. Easy, fast, secure.

Every Patient Has a Different Time Clock for Cerebrovascular Disorders. **RAPID Times Every Brain.**

Where do we go from here in CT?

Necessary CT Technological Advances Summary

Morphology

- Higher resolution provides better images, rarely different diagnoses (except for coronaries)
- Noise suppression and optimized reconstructions
- Image harmonization for AI / Radiomics

Function

- Completely under-utilized
- Profits most from PCCT (but small detectors hamper use)
- Workflow requires massive improvements

Necessary CT Technological Advances Summary

Workflow

- Automation of everything: planning, scan range, dose, contrast injection, scanning, recon, processing
- Automation of complex evaluations (stroke, functional cardiac)

Treatment

- Automatic alignment of images to needle path
- Support for multiple needles
- Motion compensation for robotics
- Matching pre- / post-ablation

IS3R 2023 | Berlin/Germany | August 24–26, 2023

