

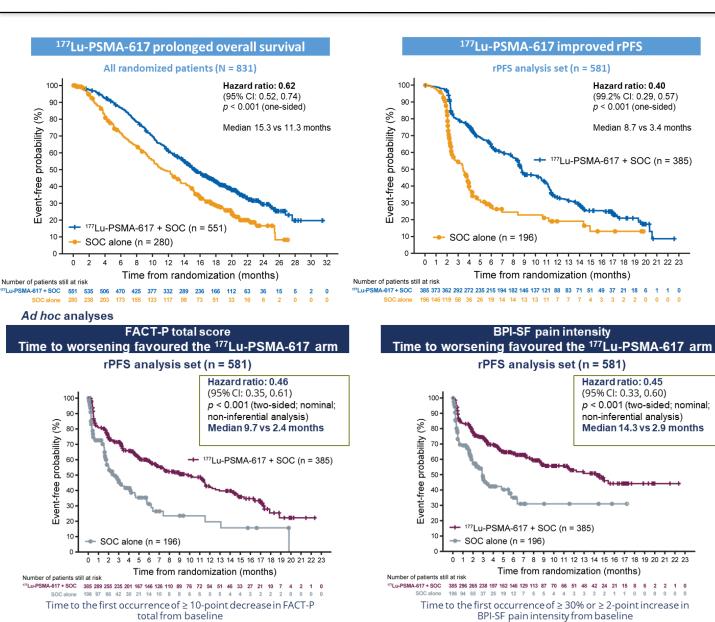
Molecular **Imaging and Theranostics** - Where are we heading?

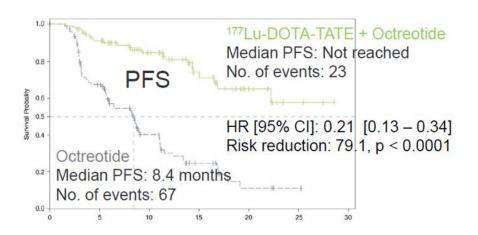
Ken Herrmann

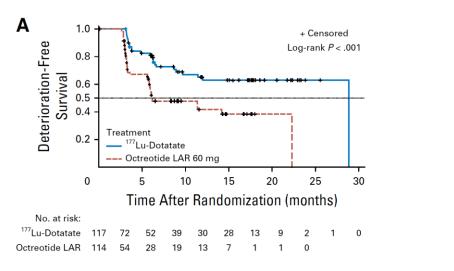
DISCLOSURES (ACCORDING TO EANM)

- 1) I or one of my co-authors hold a position as an employee, consultant, assessor or advisor for a pharmaceutical, device or biotechnology company. Consultant/Advisor of Bayer, IPSEN, Sofie Biosciences, Aktis Oncology, MPM Capital, Bain Capital, SIRTEX, Curium, ABX, BTG/BSC, Adacap/Novartis, Endocyte, Janssen, Amgen, Telix, Fusion, Theragnostics, GE and Siemens.
- 2) I or one of my co-authors receive support from or hold stocks or shares (greater than 5% equity) in a pharmaceutical, device or biotechnology company. **None.**
- 3) I or one of my co-authors hold property rights/patents for (radio)pharmaceuticals, medical devices or medical consulting firms. **None.**
- 4) I or one of my co-authors have written articles for (radio)pharmaceutical, medical device, biotechnology or consulting companies during the last 5 years. **None.**

POTSDAMER PLATZ (1989 / 2023)




https://www.mauer-fotos.de/fotos/f-023601/


https://www.h-

hotels.com/de/berlin/sehenswuerdigkeiten/potsdamer-platz

PATIENT BENEFIT

Strosberg et al., NEJM 2017; Strosberg et al., J Clin Oncol 2018; Sartor et al., NEJM 2021; Fizazi et al., Lancet Oncol in press

MARKET PREDICTIONS

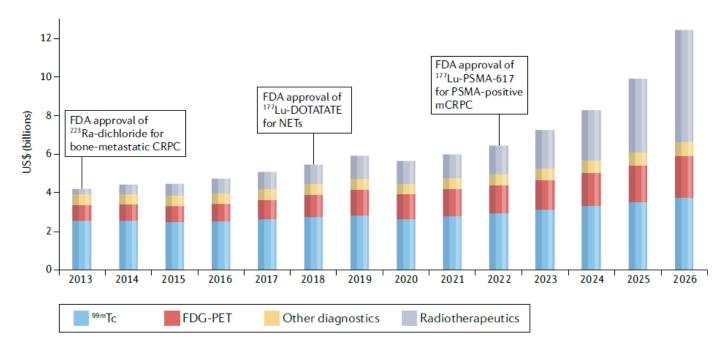


Fig. 3 | The predicted global nuclear medicine market 2013–2026. This projected market growth likely reflects the availability of a greater number of agents, implementation at an increasing number of centres and projected increases in the numbers of patients with cancer globally. ©MEDraysintell Nuclear Medicine Report & Directory, Edition 2021. CRPC, castration-resistant prostate cancer; mCRPC, metastatic CRPC; NET, neuroendocrine tumour; PSMA, prostate-specific membrane antigen.

Three fold increase in revenues 2013 to 2026 (50% 2013 to 2022) with an estimated 12 bn USD in 2026

Main driver: radiotherapeutics (10 fold increase!)

New developments:

- New targets
- New radionuclides
- New indications of approved concepts
- New administration pathways
- Combination treatment
- New Dos(ing) concepts

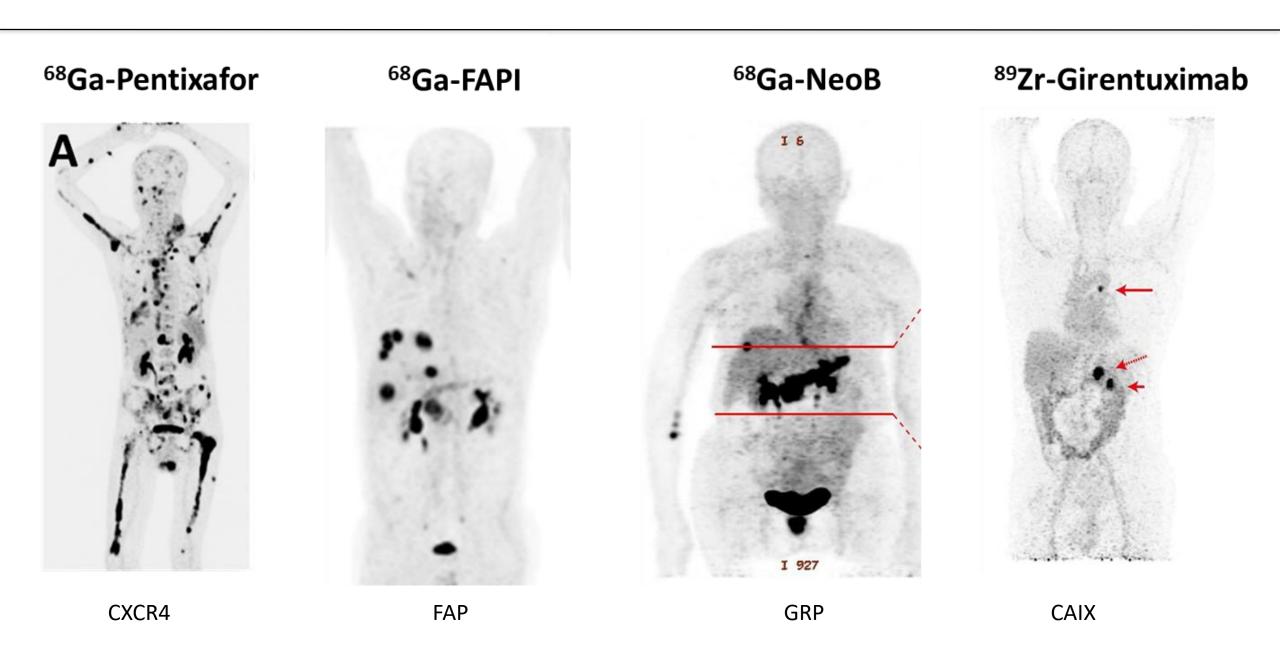
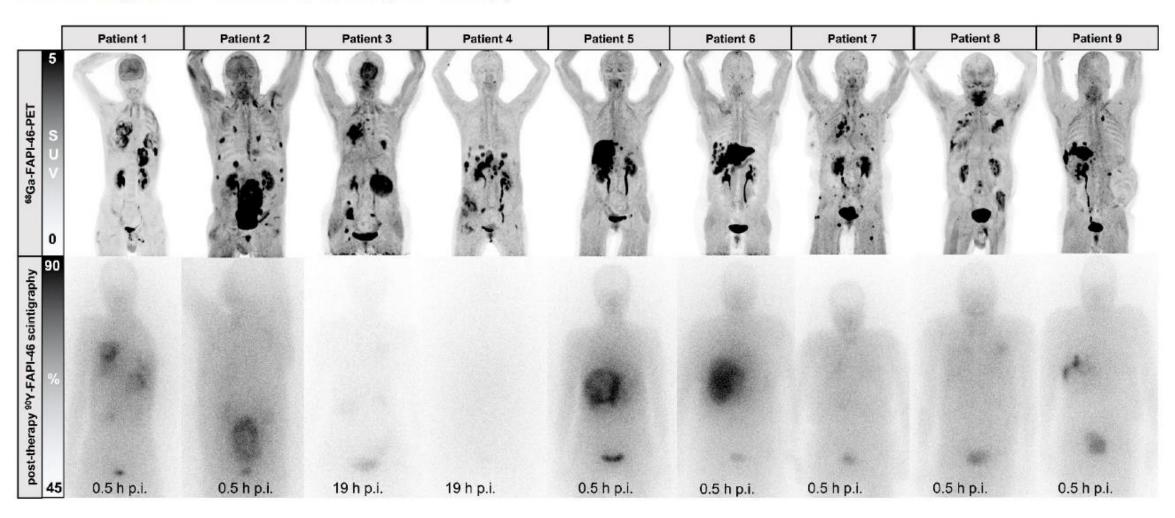
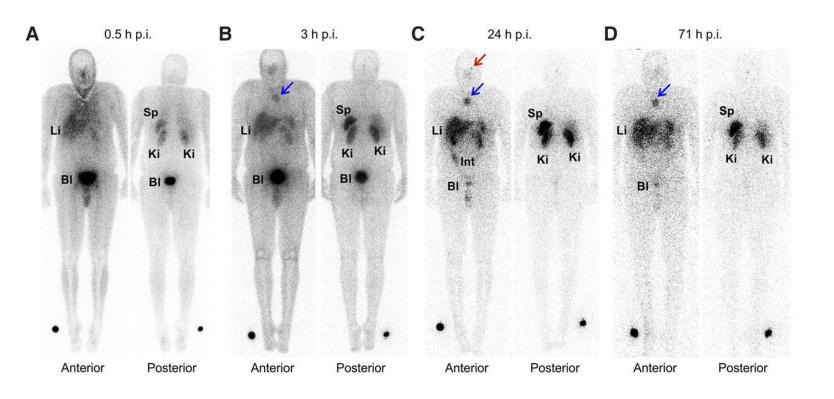
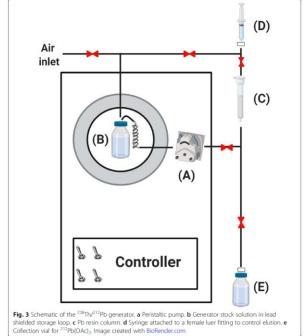




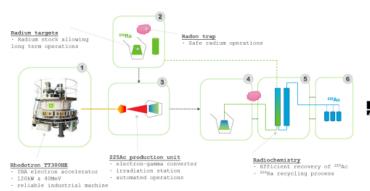
Figure 1: Pre-therapeutic ⁶⁸Ga-FAPI-46 PET images and post-treatment ⁹⁰Y-FAPI-46 bremsstrahlung scintigraphies after first cycle of ⁹⁰Y-FAPI-46 radioligand therapy



New Radionuclides

New Radionuclides such as ²¹²Pb, ¹⁶¹Tb, ⁶⁷Cu, ²¹¹At etc.

Baum et al., J Nucl Med 2021;


McNeil et al., EJNMMI Radiopharmacy and Chemistry 2021; https://advancell.com.au/technology

New (Production Pathways of) Radionuclides

Linear Accelerator Pathway

Electron (e-) Electron inear accelerator Target for generating Bremsstrahlung Neutron Neutron Pransmutation Bremsstrahlung Transmutation 225Ac

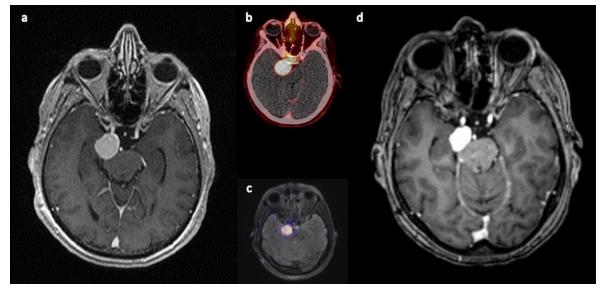
Rhodotron Pathway

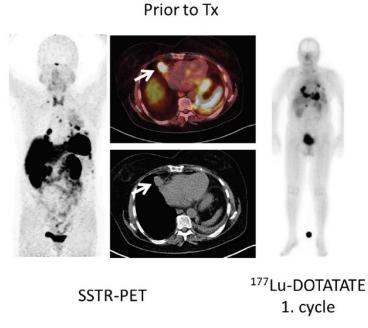
Journal of Nuclear Medicine, published on August 17, 2023 as doi:10.2967/jnumed.123.265907 EDITORIAL

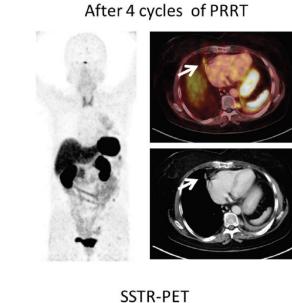
Is Actinium Really Happening?

Richard Zimmermann

Chrysalium Consulting, Lalaye, France; MEDraysintell, Louvain-la-Neuve, Belgium; and Oncidium Foundation, Mont-Saint-Guibert, Belgium

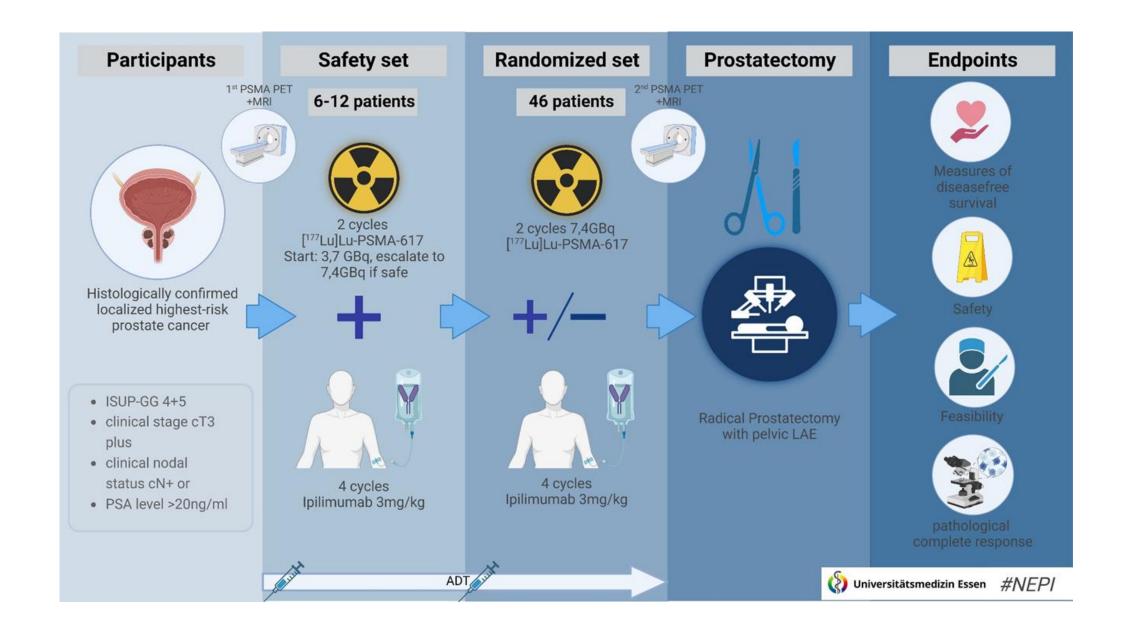

https://www.iba-radiopharmasolutions.com/sites/default/files/2022-11/PANTERA-Set-up%20of%20a%20commercial%20225Ac%20production%20facility_Poster_TRP_2022.pdf https://www.world-nuclear-news.org/Articles/New-isotope-initiatives-address-supply-challenges

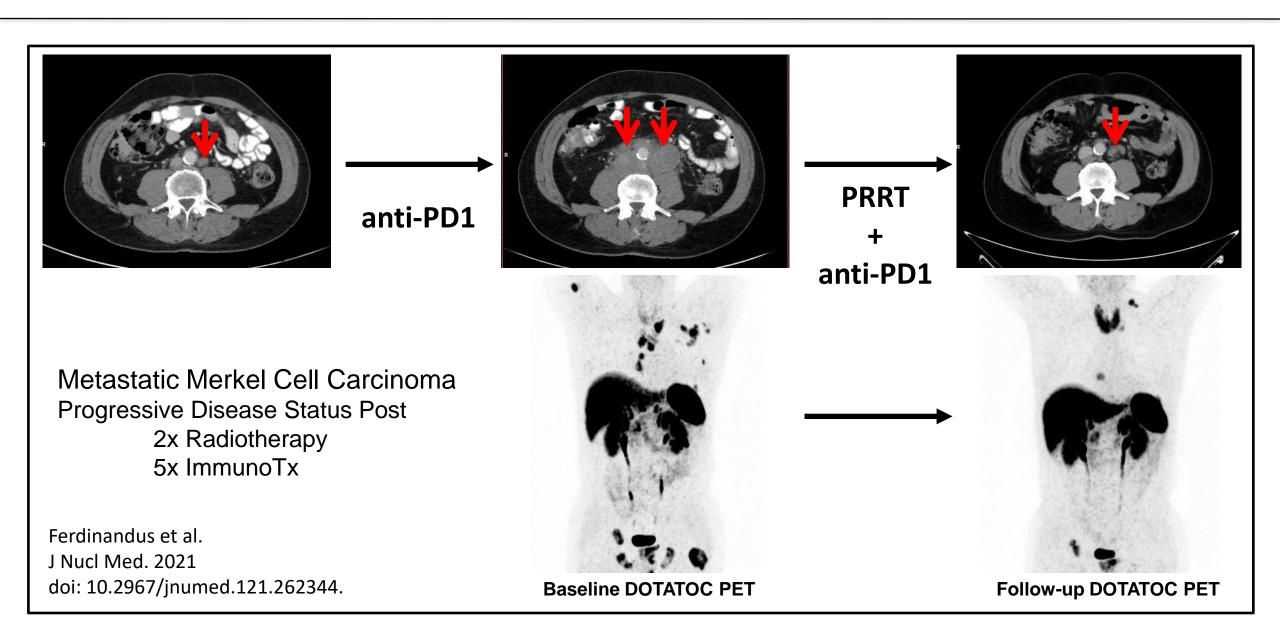

Technologies Under Development and Operating Sites for ²²⁵Ac Production, Including Estimated Present and 2032 Capacities

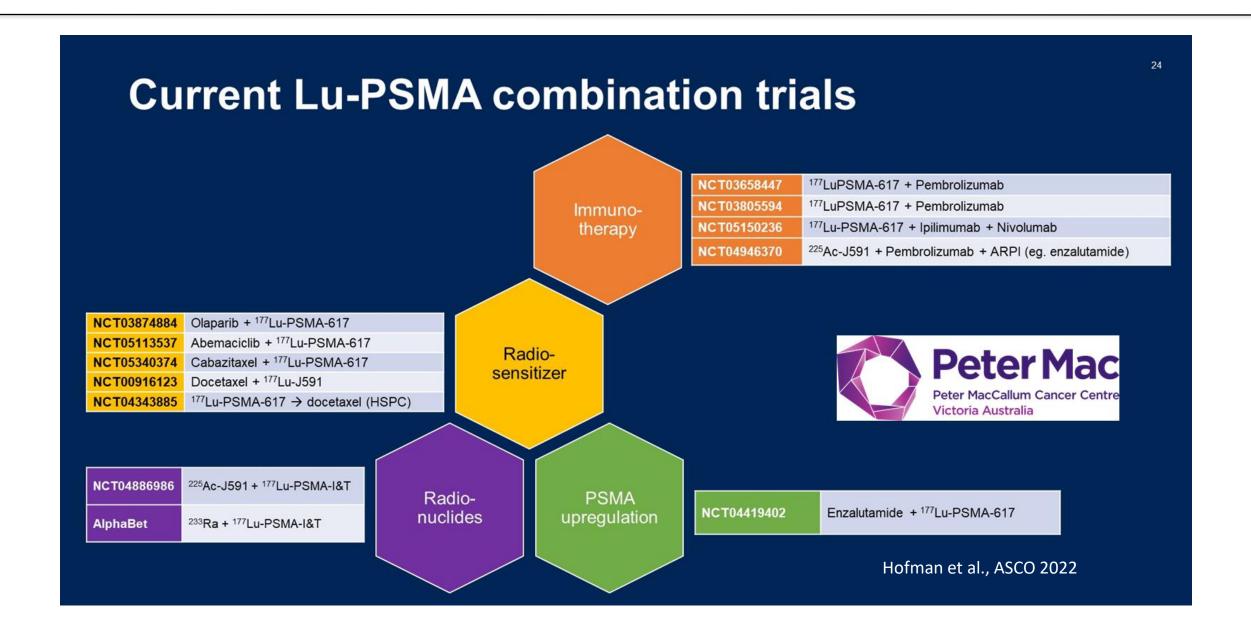

		Yearly production capacity (GBq/y/site)			
Technology	Source	2023	2032	Total (GBq/y) in 2032	Comment
A: [(²³³ U→) ²²⁹ Th→ ²²⁵ Ac] (generator)	ORNL, United States	26	26	Up to 3,000 [80]	Highest quality of <i>nca</i> ²²⁵ Ac; may enter price competitivity
	IPPE, Russia	37 (est.)	150 (est. 2025) to 300 (est. 2030)		
	JRC-ITU, Germany	11	11		
	TRIUMF, Canada	0.4	0.4		
	TerraPower, United States	>10	≤2,700		
	Pantera, Belgium	0	>70		TerraPower source
B: (232Th(p,x)225Ac+227Ac] (high-energy accelerator)	BNL/ORNL LANL; Tri-Lab, United States	16.7	Potential, >3,700	>9,000 [>240]	Contaminated with 227 Ac (0.2% EOB - ~1.5% at calibration); not suitable for large scale routine use
	CNL/TRIUMF, Canada; BWXT/ITM, United States/Germany	>1	Idem >3,700		
	INR, Russia		≤1,000		
	SpectronRx, United States	>1	>200		
	Others: Arronax, France; IsoDar, Japan; CIAE, China	First GBq in 2024	Potential, >200 each		
C: [+ + ²²⁵ Ra→ ²²⁵ Ac] (as side product)	${\sim}10\%$ of above; CNL/TRIUMF, Canada	0.3	>370 (theory)	>370 [>10]	High level of waste - expensive
D: [²²⁶ Ra(p,2n) ²²⁵ Ac] (cyclotron)		First GBq		>4,500 [>120]	Additional sites under evaluation in other countries (Asia)
	SpectronRx, United States	2023	>500		
	Ionetix, United States	2023	1,900		
	Eckert&Ziegler, Germany	2024	550		
	Alfarim, Netherlands	2025	450-850		
	N-MediPhysics, Japan	>2023	>500		
	KIRAMS, South Korea	>2025	>500		
D: [²²⁶ Ra(d,3n) ²²⁵ Ac] (linear accelerator)	Nusano, United States		≤160,000		Under evaluation
E: [²²⁶ Ra(γ,n) ²²⁵ Ra→ ²²⁵ Ac] (photoconverter)	NorthStar, United States	2023	3,700–15,000	>37,000 [>1,000]	Rhodotron: nca ²²⁵ Ac
	Pantera, Belgium	2027	3,700-5,000		
	TerraPower, United States	2029	3,700-5,000		
	Niowave, United States	2023	≤18,000		Linac: nca 225Ac
	Hitachi, Japan	>2024	>3,700		
F: $[^{226}$ Ra $(n,2n)^{225}$ Ra \rightarrow^{225} Ac] (n from d on beryllium target)	Nusano, United States		≤44,000		Under evaluation

EXPLORING PRRT BEYOND NETS

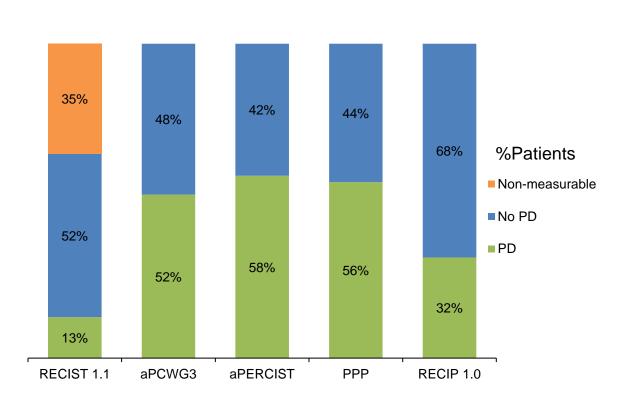
MENIGNIOMA

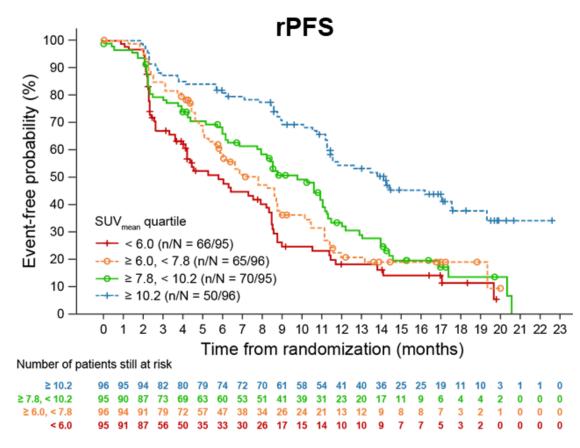



Hartrampf et al.
Clinical and Translational Radiation Oncology 2020; DOI: 10.1016/j.ctro.2020.03.002


Lapa et al.
Oncotarget 2016
DOI: 10.18632/oncotarget.7706

NEW ADMINISTRATION PATHWAYS


COMBINATION TREATMENT



ESTABLISHING (PSMA) PET FOR PATIENT SELECTION AND RESPONSE MONITORING

Interpretation of response among criteria for response evaluation at 12 weeks after ¹⁷⁷Lu-PSMA radioligand therapy¹

PSMA PET SUV_{mean} at baseline as a predictor of response to ¹⁷⁷Lu-PSMA-617 radioligand therapy²

aPERCIST, adapted Positron Emission Tomography Response Criteria in Solid Tumors; aPCWG3, adapted Prostate Cancer Working Group Criteria; PD, progressive disease; PET, positron emission tomography; PPP, PSMA PET progression; PSMA, prostate-specific membrane antigen; RECIP, Response Evaluation Criteria In PSMA-Imaging; RECIST, Response Evaluation Criteria in Solid Tumors; rPFS, radiographic progression-free survival; SUV, standardized uptake value.

^{1.} Gafita A, et al. Eur J Nucl Med Mol Imaging 2022;doi:10.1007/s00259-022-05882-x; 2. Kuo P, et al. J Clin Oncol 2022;40(no. 16_suppl):5002.

MAJOR CHALLENGES FOR SCALE UP

LAST MILE CHALLENGE

- 1. Lack of Professionals
- 2. Patient Referral
- 3. Economics

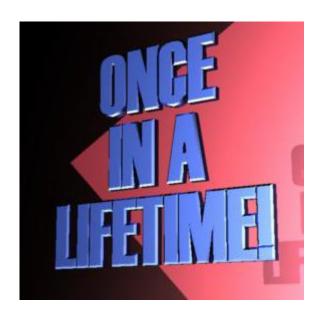
European Journal of Nuclear Medicine and Molecular Imaging https://doi.org/10.1007/s00259-022-05785-x

GUIDELINES

Joint EANM, SNMMI and IAEA enabling guide: how to set up a theranostics centre

Ken Herrmann^{1,2} · Luca Giovanella³ · Andrea Santos⁴ · Jonathan Gear⁵ · Pinar Ozgen Kiratli⁶ · Jens Kurth⁷ · Ana M. Denis-Bacelar⁸ · Roland Hustinx^{9,10} · Marianne Patt¹¹ · Richard L. Wahl¹² · Diana Paez¹³ · Francesco Giammarile¹³ · Hossein Jadvar¹⁴ · Neeta Pandit-Taskar¹⁵ · Munir Ghesani¹⁶ · Jolanta Kunikowska¹⁷

Received: 15 March 2022 / Accepted: 25 March 2022 © The Author(s) 2022


Journal of Nuclear Medicine, published on April 21, 2022 as doi:10.2967/jnumed.122.264321

Joint EANM, SNMMI and IAEA Enabling Guide: How to Set Up a Theranostics Centre

Ken Herrmann¹, Luca Giovanella², Andrea Santos³, Jonathan Gear⁴, Pinar Ozgen Kiratli⁵, Jens Kurth⁶, Ana M Denis-Bacelar⁷, Roland Hustinx⁸, Marianne Patt⁹, Richard L. Wahl¹⁰, Diana Paez¹¹, Francesco Giammarile¹¹, Hossein Jadvar¹², Neeta Pandit-Taskar¹³, Munir Ghesani¹⁴ and Jolanta Kunikowska¹⁵

SUMMARY

- Radiotheranostics is a success story
- New targets, radionuclides and combination approaches driving next wave
- Challenge Last Mile
- Fast Track Pathways needed, Leveraging Companion Imaging

